Energy-saving Speroni SCRE PLUS 40 - SCRE PLUS 60 electronic circulation pumps for central heating Along with the series Delta HE we have achieved a circulation pump which is classified in energy efficiency class "A". Using a Speroni pump instead of a conventional circulation pump helps to reduce energy consumption up to 80%, while keeping the hydraulic power at a comparable level. The "One touch" option allows you to choose from seven different performance curves. #### **Technical data** max. lifting height: max. flow: power consumption (W): electronically regulated power: operating voltage: motor protection: protection type: insulation class: ambient temperature: media temperature: temperature class: max. operating pressure: connection: installation length: weight: #### SCRE PLUS 40 SCRE PLUS 60 4.0 m 6.0 m 2600 l/h 3200 l/h 3-23 3-38 adjusted to the actual energy demand of the installation 1x230V, 50 Hz external protection is not required IP 44 F 0°C to 40°C 5°C to 95°C TF 95 10 bor 10 bar DN15, DN20, DN25, DN32 130 mm, 180 mm about 2.40 kg #### pumps performance curves ## **SCRE PLUS** #### **Display settings** #### The display The display is lit when pump is plugged in. The LED display shows the current power consumption. Faults are shown on the display as "E1", "E2" or "E3" errors. When the night setback function is activated and the pump is switching to this mode, then the "-C" symbol appears on the display. #### **Curve selection button** By pressing the button pump settings change. Pressing the button seven times causes to select one by one all the options and then return to the first one. | Display | Description | | | |---------|---------------------------------------|--|--| | 1 | constant rotation speed I | | | | II | constant rotation speed II | | | | III | constant rotation speed III | | | | PD1 | low curve of proportional pressure | | | | PD2 | second curve of proportional pressure | | | | PD3 | third curve of proportional pressure | | | | PD4 | high curve of proportional pressure | | | #### Night setback button Pressing the button activates the automatic night setback function, which is also shown on the display. Pressing and holding the button for 5 seconds activates the function permanently, and therefore "-C" appears on the display. Pressing the button again deactivates the function. ## SPERONI® #### **ELECTRONIC CIRCULATING PUMPS FOR CENTRAL HEATING** ### **SCRE PLUS** #### **Pump settings** Regulation of proportional pressure When operating the pump adjusts to the settings of proportional pressure. Whereas differential pressure is controlled by the pump, depending on the current of the flow. Lines (characteristics) of proportional pressure are denoted with PD1 to PD4 symbols on corresponding Q/H graphs. #### Constant rotation speed control Lines (characteristics) of constant speed rotation are denoted with I to III symbols on the Q/H graph. This type of control allows the pump to maintain constant rotation speed. #### Automatic night setback The requirements for night setback temperature reduction In no case the night setback function should be activated in pumps built in gas fired boilers with a small amount of water. #### Tip If the heating device does not impart enough heat to the radiators, check whether the automatic night setback function is not activated. If this is the case, the function should be deactivated. In order to guarantee proper functioning of the night setback function, the following conditions must be met: - 1. The pump must be mounted on the water inlet. - 2. The heating device has to be equipped with an automatic supply temperature control. #### How night setback function works In order to activate the night setback function press button. When the display lits, it means the function is activated and the pump is switching automatically from the standard mode to the night setback function. The switchover depends on the water supply temperature. The pump switches automatically to the night setback mode, if the water supply temperature drops more than 10° - 15°C within an hour. Consequently, the "-C" symbol appears on the display. The pump immediately switches to the standard mode when the water supply temperature increases 3°C. #### **Night setback** The function can be activated permanently. After activating the night setback function the button has to be pressed during 5 seconds. The "-C" symbol displays after releasing the button. Until the button is pressed again, the pump will remain in the chosen mode. #### **SCRE PLUS** | Article | Pump body | Length
(mm) | DN | External
thread | H(m) | Power consumption (W) | |---------------------|-----------|----------------|----|--------------------|------|-----------------------| | SCRE PLUS 25/40-180 | Cast iron | 180 | 25 | G 1 1/2 " | 4 | 3-23 | | SCRE PLUS 32/40-180 | Cast iron | 180 | 32 | G 2" | 4 | 3-23 | | SCRE PLUS 25/60-180 | Cast iron | 180 | 25 | G 1 1/2" | 6 | 3-38 | 14 # CIRCULATING PUMP #### Introduction Until recently, central heating installations in private house building used mainly gravity water circulation. In such a cycle, the water circulates in the installation thanks to the density difference caused by temperature difference between the supply (the outlet of heated water from the boiler) and the return (the inlet of cool water from the radiators back into the boiler). The faults of such a system include significant inertia, non-uniform distribution of heat and big diameter pipelines. Presence of a pump in a central heating installation allows to reduce considerably the cross section of the wire. Moreover thanks to the automatic system control the fuel consumption decreases. Having a pump in the heating installation helps to reduce capital and operating costs. Pumps designed for central heating installations are equipped with a wet motor, and due to that they are called sealed glandless pumps. The pumped water reduces the friction in slide bearings and cools the motor. Such a construction has many advantages. One of which is no need for constant maintenance. As opposed to gland pumps, they do not require constant maintenance - lubrication or seal replacement. Another advantage is that they are silent running. Silent running has been achieved by using slide bearings in the rotor shaft. Moreover, the turning components of the pump are lipped by water, which also helps to reduce the noise. Glandless pumps are known for their long-term durability. Service life of such a pump is up to 15-20 years, which equals approximately 100 000 hours of work. We reserve the right to alter technical characteristics of Speroni products at any time without notice, as well as to correct mistakes in our catalogue. #### Pumps with rotors working in a liquid medium In wet-rotor pumps, the rotor is submerged in the medium and at the same time it is a component of the electric motor. The sleeve sealing the motor is made of high-quality stainless steel and it protects the stator from being flooded. The pump shaft is made of corrosion-resistant material and it is equipped with ceramic/graphite bearings. The pump's sealing is static. The pumped medium fulfils two functions: it cools the pump and reduces the friction in bearings. Wet-rotor pumps are noiseless and do not require significant expenditure on maintaining them in technical efficiency. Pumps with three rotational speeds, regulated with the use of U type switch, and UE type electronically controlled pumps are also types of wet-rotor pumps. #### Selection of a pump #### Choosing a pump with three rotational speeds Characteristic properties of the pumps are shown in the form of characteristic curves illustrating pressure H, power P and the level of pump usage depending on flow Q. Data on the required pressure flow and drop in the system / installation is included in the project documentation. In order to choose the right pump, the mentioned above data should be compared with technical characteristics of the pumps. The calculated point R, with the coordinates Qr and Hr, is the very basis for choosing the right pump. A pump with three rotational speeds has the Q-H characteristics for each speed (see figure 1). The pump operates in the actual working point D. The estimated point marks at the same time the point of intersection of the hydraulic resistance curve in the installation, and Q-H curve of a certain pump. #### Viscosity of working media All hydraulic data, as well as other data included in the technical catalogue apply to water as the working media, with the kinematic viscosity of 1 mm 7sec. If there is no information on working media in the description of a particular pump, then in order to achieve normal functionality of the pump you should provide a pure medium, which is of the same standard as liquid heating water (according to the VDI 2035 requirements specifying water hardness and pH-value) without any aggressive, explosive or mineral oil additives and hard or fibre particles. Kinematic viscosity of water can be up to 10 mm²/sec. If viscosity of water ranges from 1 to 10 mm²/sec, then the addition of an antifreeze agent (e.g. glycol) does not influence considerably the functioning of the pump. #### Selection of electronically controlled pumps Functioning of electronically controlled pumps has been adjusted to annual heating energy consumption standards. The average annual consumption is showed in figure 2, illustrating seasonal overload. The proper selection of regulated pumps is shown in figures 3, 4 and 5. (Comparison of pump's characteristics determined by the design with actual technical characteristics of a particular pump). While using regulated pumps you can benefit from the operational field of a particular pump, which ranges from the minimal to the maximal Q-H curves. That is why such a regulation type is called stepless thermal regulation. The R design point should be located as close as possible to the functional max. Q-H curve. As shown in the figure illustrating the annual heating load, the heating system works on full load of thermal power only for several days throughout the year. Throughout the rest of the year the power consumption is reduced by the electronic pump control system. When it comes to optimal operation of the system (also with the use of thermostatic valves mounted on heating systems), a large amount of energy can be saved thanks to regulated pumps. Therefore, replacing non-regulated pumps with regulated pumps helps to save money and energy. The savings are shown in figure 6. #### **Practical advice** #### **Electrical connection** Connect the electric cables and earthing with a slight sag to the terminal strip, and plug in according to the marking. - L phase - N neutral conductor External electric protection is not required. The pump motor can be placed freely at 90° to the pump body, nevertheless it is important that the cable lead is not turned upwards and the terminal box is not located below the motor (see figures 2, A1, A2, A3, A4). The terminal box connection and the contacts between the box and the motor winding must be protected against humidity. It is forbidden to mount pumps in high humidity rooms. #### Starting the pump In order to reduce the noise, which is caused by the presence of air in a pump, it is necessary to vent the pump properly. Therefore you should: - fill the installation with a heating medium - vent the installation - open radiator valves to make sure if there is flow in the installation - start the pump - change over to the max, rotational speed (speed III) - twist off the bleeder screw allowing the free flow of air - eventually turn on the rotational speed #### **Pump operation** The pump does not require any operation while it is on. The flow can be controlled by changing the rotational speed with a switch located on the electric box. Adjustments can be made while the pump is operating. 4 #### **Troubleshooting** | Troubleshooting | Cause | Action | | |---------------------|--------------------------------|---|--| | Pump is not working | Electricity is not switched on | Check: fuses, loose electrical connections, electric cables | | | | Capacitor is defective | Replace the capacitor | | | | Pump fails to start | Change over to max. rotational speed Unlock the rotor - twist off the bleeder screw and turn the pump shaft with a screwdriver Replace the starting capacitor | | | Poor performance | Dirty rotor | Dismantle the head and clean the rotor | | | | Air in the pump | Vent the installation Vent the pump Mount an air classifier | | | | Inlet pressure too low | Increase the inlet pressure
Check the air volume in the membrane vessel
(if there is any) | | | | Low rotational speed | Change over to greater rotational speed | | | Noise in the pump | Air in the pump | Vent the installation Vent the pump Mount an air classifier | | | | Noise caused by cavitation | Increase the flow pressure Reduce the heating medium temperature Reduce the pump rotational speed Reduce flow on the valve behind the pump | | | | Too high performance | Reduce the rotational speed | |